Uncertainty-aware State Space Transformer for Egocentric 3D Hand Trajectory Forecasting
Wentao Bao*
Lele Chen
Libing Zeng*
Zhong Li*
Yi Xu*
Junsong Yuan*
Yu Kong*
* External authors
ICCV 2023
2023
Abstract
Hand trajectory forecasting from egocentric views is crucial for enabling a prompt understanding of human intentions when interacting with AR/VR systems. However, existing methods handle this problem in a 2D image space which is inadequate for 3D real-world applications. In this paper, we set up an egocentric 3D hand trajectory forecasting task that aims to predict hand trajectories in a 3D space from early observed RGB videos in a first-person view. To fulfill this goal, we propose an uncertainty-aware state space Transformer (USST) that takes the merits of the attention mechanism and aleatoric uncertainty within the framework of the classical state-space model. The model can be further enhanced by the velocity constraint and visual prompt tuning (VPT) on large vision transformers. Moreover, we develop an annotation workflow to collect 3D hand trajectories with high quality. Experimental results on H2O and EgoPAT3D datasets demonstrate the superiority of USST for both 2D and 3D trajectory forecasting.
Related Publications
In this paper, we propose an approach to obtain a personalized generative prior with explicit control over a set of attributes. We build upon MyStyle, a recently introduced method, that tunes the weights of a pre-trained StyleGAN face generator on a few images of an individu…
We present a novel type of neural fields that uses general radial bases for signal representation. State-of-the-art neural fields typically rely on grid-based representations for storing local neural features and N-dimensional linear kernels for interpolating features at con…
JOIN US
Shape the Future of AI with Sony AI
We want to hear from those of you who have a strong desire
to shape the future of AI.